Дисперсия оптических волокон. Дисперсия сигналов в оптических волокнах Уширение импульса в оптическом волокне

Хроматическая дисперсия возникает из-за того, что спектр оптического сигнала имеет конечную ширину и разные спектральные компоненты сигнала движутся в волокне с разной скоростью (рисунок 3.2).

Примерный ход запаздывания импульсов и коэффициента дисперсии от длины волны излучения показан на рисунке 3.3. Коэффициент дисперсии () рассчитывается по зависимости удельного запаздывания от длины волны излучения, где L - длина волокна.


Рисунок 3.2 - Материальная и волноводная дисперсии в одномодовом волокне


Рисунок 3.3 - Зависимость запаздывания и коэффициента дисперсии в SM волокне т длины волны

Изменение ширины импульсов (в отсутствие потерь или усиления) неизбежно сопровождается изменением их пиковой амплитуды (рисунок 3.4). При этом в первом приближении сохраняется произведение амплитуды импульса на его ширину (площадь импульса не изменяется):


Рисунок 3.4 - Изменение ширины импульсов сопровождается изменением их пиковой мощности и характеризуется штрафом по мощности

Изменение пиковой амплитуды импульсов принято характеризовать величиной штрафа по мощности:

Это же понятие удобно использовать и для характеристики относительной величины уширения импульсов

При этом за пороговое значение штрафа по мощности часто принимают уровень q = 2 дБ, что соответствует увеличению ширины импульса примерно в 1,6 раза.

Хроматическая дисперсия представляет собой сумму материальной и волноводной дисперсий: . Пояснить это можно следующим образом. Как уже говорилось, хроматическая дисперсия возникает из-за того, что скорость распространения волны меняется при изменении длины волны. В однородной среде скорость распространения волны может изменяться только из-за зависимости показателя преломления среды от длины волны, что и приводит к появлению материальной дисперсии. В волокне волна распространяется в двух средах - частично в сердцевине, а частично - в кварцевой оболочке, и для нее показатель преломления принимает некое среднее значение между значением показателя преломления сердцевины и кварцевой оболочки (рисунок 3.5).

Этот средний показатель преломления может изменяться по двум причинам. Во-первых, из-за того, что показатели преломления сердцевины и кварцевой оболочки зависят от длины волны (примерно одинаково). Эта зависимость приводит к появлению материальной дисперсии. Материальная дисперсия является основным видом дисперсии в одномодовых системах. Величину материальной дисперсии можно найти из выражения

где - удельная материальная дисперсия.

Во-вторых, потому, что при изменении длины волны, меняется глубина проникновения поля в кварцевую оболочку и, соответственно, меняется среднее значение показателя преломления (даже если значения показателей преломления сердцевины и кварцевой оболочки не меняются). Это чисто волноводный эффект, и поэтому возникающую из-за него дисперсию называют волноводной. Величину волноводной дисперсии можно найти из выражения

где - удельная волноводная дисперсия.


Рисунок 3.5 - Волноводная дисперсия возникает из-за того, что усредненный по диаметру моды показатель преломления изменяется при изменении длины волны

Волноводная дисперсия зависит от формы профиля показателя преломления. В SM волокнах форма профиля показателя преломления ступенчатая с относительно большим диаметром сердцевины и малым скачком показателя преломления. В DS и NZDS волокнах длина волны нулевой дисперсии смещена по сравнению с SM волокнами в длинноволновую сторону.

Для того чтобы сместить длину волны нулевой дисперсии, необходимо уменьшить либо материальную, либо волноводную составляющую хроматической дисперсии. Сделать это можно, изменяя состав примесей, вводимых в сердцевину. Материальная дисперсия слабо зависит от состава легирующих примесей. В больших пределах меняется волноводная дисперсия (за счет изменения формы профиля показателя преломления) (рисунок 3.6).

Рисунок 3.6 - Профили показателя преломления DS и NZDS волокон: а) треугольник на пьедестале, б) трезубец (или W)

Хроматическая дисперсия состоит из материальной и волноводной составляющих и имеет место при распространении как в одномодовом, так и в многомодовом волокне. Однако наиболее отчетливо она проявляется в одномодовом волокне, в виду отсутствия межмодовой дисперсии.

Материальная дисперсия обусловлена зависимостью показателя преломления волокна от длины волны. В выражение для дисперсии одномодового волокна входит дифференциальная зависимость показателя преломления от длины волны.

Волноводная дисперсия обусловлена зависимостью коэффициента распространения моды от длины волны

где введены коэффициенты M(l) и N(l) - удельные материальная и волноводная дисперсии соответственно, а Dl (нм) - уширение длины волны вследствие некогерентности источника излучения. Результирующее значение коэффициента удельной хроматической дисперсии определяется как D(l) = M(l) + N(l). Удельная дисперсия имеет размерность пс/(нм*км). Если коэффициент волноводной дисперсии всегда больше нуля, то коэффициент материальной дисперсии может быть как положительным, так и отрицательным. И здесь важным является то, что при определенной длине волны (примерно 1310 ± 10 нм для ступенчатого одномодового волокна) происходит взаимная компенсация M(l) и N(l), а результирующая дисперсия D(l) обращается в нуль. Длина волны, при которой это происходит, называется длиной волны нулевой дисперсии l0. Обычно указывается некоторый диапазон длин волн, в пределах которых может варьироваться l0 для данного конкретного волокна.

Фирма Corning использует следующий метод определения удельной хроматической дисперсии. Измеряются задержки по времени при распространении коротких импульсов света в волокне длиной не меньше 1 км. После получения выборки данных для нескольких длин волн из диапазона интерполяции (800-1600 нм для MMF, 1200-1600 нм для SF и DSF), делается повторная выборка измерения задержек на тех же длинах волн, но только на коротком эталонном волокне (длина 2 м). Времена задержек, полученных на нем, вычитаются из соответствующих времен, полученных на длинном волокне, чтобы устранить систематическую составляющую ошибки.

Для одномодового ступенчатого и многомодового градиентного волокна используется эмпирическая формула Селмейера (Sellmeier, ): t (l) = A + Bl2 + Cl-2. Коэффициенты A, B, C являются подгоночными, и выбираются так, чтобы экспериментальные точки лучше ложились на кривую t (l). Тогда удельная хроматическая дисперсия вычисляется по формуле:

где l0 = (C/B)1/4 - длина волны нулевой дисперсии (zero dispersion wavelength), новый параметр S0 = 8B - наклон нулевой дисперсии (zero dispersion slope, его размерность пс/(нм2*км)), а l - рабочая длина волны, для которой определяется удельная хроматическая дисперсия.

а) многомодового градиентного волокна (62,5/125)

б) одномодового ступенчатого волокна (SF)

в) одномодового волокна со смещенной дисперсией (DSF)

Статья в тему

Тактирующие устройства. Триггеры
Данная работа посвящена рассмотрению роли триггеров в цифровых устройствах. Во всех современных компьютерах применяется логическая система, изобретения Джорджем Булем. С развитием электроники появился такой класс электронной техники, как цифровая. Цифровая техника включает в себя такие устройства...

2.1.Причины и виды дисперсии

Основной причиной возникновения дисперсии в волокне является некогерентность источника излучения (лазера). Идеальный источник всю мощность излучает на заданной длине волны λ 0 , однако реально излучение идёт в спектре λ 0 ± Δλ (рис.2.1), так как не все возбуждённые электроны возвращаются в то же состояние, из которого они были выведены при накачке.

Рис.2.1. Реальное излучение лазера

Коэффициент преломления является частотнозависимой величиной, то-есть n есть функция от λ: n = f (λ), см. рис.2.2.

Рис.2.2. Зависимость коэффициента преломления от длины волны

Следовательно, при распространении сигнала, состоящего из смеси длин волн λ 0 ± Δλ , части сигнала идут с разной скоростью, и возникает дисперсия:

λ ± Δλ → n ± Δn → c /(n ± Δn) → v ± Δv → Δτ.

Этот вид дисперсии называется материальной дисперсией.

Поперечная постоянная распространения волны (вдоль радиуса волокна) также зависит от длины волны, то есть от длины волны зависит площадь моды и площадь той части оболочки, которая захватывается площадью моды, выходящей за границы сердцевины. Распространение света вдоль пограничной с сердцевиной части оболочки идёт с большей скоростью, чем по сердцевине, что вносит вклад в изменение дисперсии. Эта дисперсия называется волноводной дисперсией. Обе эти дисперсии, материальная и волноводная, в сумме называются хроматической дисперсией. Они складываются арифметически. На рис.2.3 показаны зависимости материальной и волноводной дисперсии и их суммы от длины волны. Для стандартного одномодового волокна при λ = 1300 нм эти дисперсии равны и противоположны по знаку, и суммарная дисперсия равна нулю.

Рис.2.3. Зависимость материальной и волноводной дисперсии в стандартном одномодовом волокне от длины волны (нм)

В многомодовом волокне кроме хроматической дисперсии существует ещё межмодовая дисперсия. Если мод несколько, то каждая распространяется вдоль волокна со своей скоростью, которые могут значительно отличаться друг от друга. На рис.2.4 приведены графики фазовых скоростей некоторых мод.

Рис. 2.4. График фазовых скоростей некоторых мод в зависимости от частоты.

Если параметры волокна меняются, например, случайно изменится диаметр сердцевины, происходит перестройка мод, и моды обмениваются энергией. Межмодовая дисперсия на порядок больше хроматической дисперсии, что явилось причиной разработки одномодовых кабелей, в которых межмодовая дисперсия отсутствует. В таблице 2.1 приведено примерное соотношение величин видов дисперсии для различных типов волокон.

Табл.2.1. Соотношение между различными видами дисперсии

Суммарная дисперсия определяется как корень квадратный из суммы квадратов хроматической и межмодовой дисперсий:

(2.1)

Материальная и волноводная дисперсии рассчитываются по формулам

τ мат = ∆λ∙ М(λ)∙ L (2.2),

τ вв = ∆λ∙ В(λ)∙ L (2.3),

где ∆λ – ширина полосы излучения лазера, нм;

М(λ) и В(λ) – удельные материальная и волноводная дисперсии, пс/(нм·км);

L – длина линии, км.

Величины М(λ) и В(λ) приводятся в справочниках.

τ Σ = [τ мм 2 +(τ мат + τ вв) 2 ] 1/2

Вариант табл. 2.1. Примерные значения величин дисперсии для различных типов волокон

2.2. Поляризационная модовая дисперсия (ПМД)

Свет представляет собой колебания поперечные к направлению распространения света (рис.2.5). Если конец вектора поля описывает прямую линию, то такая поляризация называется линейной, если круг или эллипс, то круговой или эллиптической. Большинство людей за редким исключением поляризацию света не ощущают, только некоторые (таким был, например Лев Толстой), чётко различают поляризованный и неполяризованный свет. Обычный интегральный светоприёмник (диод) также реагирует только на интенсивность волны, а не на её поляризацию. Однако некоторые оптические устройства, например некоторые типы усилителей имеют коэффициент усиления, зависящий от поляризации.

Рис. 2.5. Виды линейной поляризации

Кроме того, поляризация вектора имеет большое значение в процессах отражения и преломления, так как коэффициенты Френеля, характеризующие амплитуды отражённой и преломленной волны, в общем случае зависят от направления вектора поляризации (рис.2.6). На рис.2.6 показано, как отражается смесь лучей параллельной (черточки) и перпендикулярной (точки) поляризаций по отношению к плоскости распространения при переходе через горизонтальную плоскость раздела. Из рисунка видно, что при некотором угле (угол Брюстера) все отражённые волны имеют перпендикулярную поляризацию, а преломленные – параллельную.

Рис. 2.6. Отражение волн разной поляризации.

В классическом одномодовом волокне единственной модой является волна НЕ 11 . Однако если учитывать поляризацию, то в волокне присутствуют две взаимно ортогональные моды, соответствующие горизонтальной и вертикальной осям x и y. В реальной ситуации волокно не является в сечении всегда идеальным кругом, а часто представляет в силу тех или иных особенностей технологии небольшой эллипс. Кроме того, при намотке кабеля и при его прокладке возникают не симметричные механические напряжения и деформации волокна, что приводит к двойному лучепреломлению. Коэффициент преломления вследствие дополнительного напряжения будет изменяться, и скорости распространения ортогональных мод на различных участках будут отличаться друг от друга, что будет вносить разные временные задержки при распространении ортогональных мод. Импульс в целом будет испытывать статистическое уширение во времени, которое называется поляризационной модовой дисперсией (ПМД). Так как ПМД на разных участках линии различна и подчиняется статистическим закономерностям, то обычно используется среднеквадратичное суммирование, и расчёт ПМД производится по формуле

Общие положения

Дисперсией оптического волокна называют рассеяние во времени спектральных или модовых составляющих оптического сигнала. Основная причина дисперсии - разные скорости распространения отдельных составляющих оптического сигнала. Дисперсия проявляется как уширение, увеличение длительности распространяющихся по волокну

оптических импульсов.

В общем случае указанная величина уширения оптического импульса ∆δ определяется непосредственно значениями среднеквадратической длительности на передающей δin и δout соответственно:

В свою очередь дисперсия создает переходные помехи, приводит к межсимвольной интерференции и, соответственно, ошибкам при приеме сигналов, что ограничивает скорость передачи в линии или, иными словами, длину регенерационного участка (РУ).

Межмодовая дисперсия

Межмодовая дисперсия характерна только для многомодовых оптических волокон. Она возникает в многомодовых световодах из-за наличия большего числа мод с различным временем распространения и различной длины пути, который отдельные моды проходят в сердцевине волокна (рис. 1.10 - 1.11).

Полоса пропускания типовых градиентных многомодовых оптических волокон характеризуется коэффициентом широкополосности ∆F, МГц-км, значение которого указывается в паспортных данных на длинах волн, соответствующих первому и второму окнам прозрачности. Стандартные полосы пропускания типовых многомодовых оптически волокон составляют 400...2000 МГц-км.

Реализация высокоскоростных многомодовых ВОЛП требует применения одномодовых лазеров в качестве источников излучения оптоэлектронных модулей ОСП, обеспечивающих скорость передан данных свыше 622 Мбит/с (STM-4). В свою очередь, основным фактором искажения оптических сигналов одномодовых ОСП, распространяющихся по волокнам многомодовых ВОЛП является уже не многомодовая дисперсия, а дифференциальная модовая задержка (DMD). DMD носит случайный характер и зависит непосредственно от параметров конкретной пары «источник-волокно», а также от условий ввода излучения с выхода лазера в линейный тракт многомодовой ВОЛП. Поэтому в паспортных данных на новый тип многомодовых волоконных световодов - волокон, оптимизированных для работы с лазерами - помимо значений коэффициента широкополосности, позволяющем оценить величину межмодовой дисперсии при передаче сигналов многомодовых ОСП по многомодовым ВОЛП, также указываются дополнительные сведения, полученные в результате измерений DMD в процессе изготовления волокна, - например, предельная длина ЭКУ одномодовой ОСП Gigabit Ethernet.

Очевидно, что в одномодовых волоконных световодах межмодовая дисперсия не проявляется. Одними из основных факторов искажений сигналов, распространяющихся по одномодовым оптическим волокнам являются хроматическая и поляризационная модовая дисперсии

Хроматическая дисперсия

Хроматическая дисперсия Dch обусловлена конечной шириной спектра излучения лазера и различием скоростей распространена отдельных спектральных составляющих оптического сигнала. Хроматическая дисперсия складывается из материальной и волноводной дисперсии, и проявляется как в одномодовых, так и многомодовых оптических волокнах:

Материальная дисперсия

Материальная дисперсия Dmat определяется дисперсионными характеристиками материалов, из которых изготовлена сердцевина oптического волокна - кварца и легирующих добавок. Спектральная зависимость показателя преломления материала сердцевины и оболочки (рис 1.24) вызывает изменения с длиной волны и скорости распространения.

Достаточно часто данная зависимость описывается известным уравнением Селлмейера, которое имеет следующий вид :

(1.28)

Где Aj и Вj – коэффициенты Селлмейра, соответствующие заданному типу материала, легирующей примеси и ее концентрации.

Рис. 1.24. Спектральная зависимость показателя преломления чистого кварца (сплошная кривая) и кварца, легированного 13,5% германием (штриховая кривая)

Очевидно, что эту характеристику для кварцевых волокон можно считать неизменной. Материальная дисперсия характеризуется коэффициентом Dmat пс/(нмкм), который определяется из известного соотношения:



В качестве примера, на рис. 1.25 представлены спектральные характеристики коэффициентов материальной дисперсии чистого кварца и кварца, легированного 13,5% германия.

Очевидно, что характер проявления материальной дисперсии зависит не только от ширины спектра излучения источника, но и от его центральной рабочей длины волны. Так, например, в области третьего окна прозрачности λ=1550 нм менее длинные волны распространяются быстрее, чем более длинные, а материальная дисперсия больше нуля (Dmat>0). Данный диапазон получил название области нормальной или положительной дисперсии (рис. 1.26 (б)).

В области первого окна прозрачности λ=850 нм, напротив, более длинные волны распространяются быстрее, чем короткие, а материальной дисперсии соответствует отрицательное значение (Dmat<0) Данный диапазон называется областью аномальной или отрицательной дисперсии (рис. 1.26 (в)).

Рис. 1.26. Хроматическая дисперсия: (а) импульс на входе ВОЛП; (б) нормальная

дисперсия; (в) аномальная дисперсия; (г) область нулевой дисперсии.

В некоторой точке спектра, называемой точкой нулевой материальной дисперсии λ0, происходит совпадение, при этом и короткие, и длинные волны распространяются с одинаковой скоростью (рис. 1.26 (г)). Так, например, для чистого кварца SiО2 точка нулевой материальной дисперсии соответствует длине волны 1280 нм (рис. 1.25).

Дисперсией оптического волокна называют рассеивание во времени составляющих оптического сигнала. Причина дисперсии – разные скорости распространения составляющих оптического сигнала.

Дисперсия проявляется как увеличение длительности (уширение) оптических импульсов при распространении в ОВ. Увеличение длительности оптических импульсов вызывает межсимвольную интерференцию - создает переходные помехи, что ухудшает отношение сигнал/помеха и в результате приводит к ошибкам на приеме. Очевидно, что межсимвольная интерференция увеличивается с уширением оптических импульсов. При фиксированном значении уширения импульсов межсимвольная интерференция возрастает с уменьшением периода следования импульсов T. Таким образом, дисперсия ограничивает скорость передачи информации в линии B=1/T и длину регенерационного участка (РУ).

В оптических волокнах можно выделить несколько видов дисперсии: модовую, поляризационную модовую и хроматическую дисперсию.

В многомодовом ОВ преобладает межмодовая дисперсия, вызванная наличием большого числа мод с различным временем распространения.

существенно превышает другие виды дисперсии, поэтому полоса пропускания таких ОВ определяется в основном модовой дисперсией. Увеличения полосы пропускания многомодовых ОВ добиваются за счет градиентного профиля показателя преломления, в котором показатель преломления в сердцевине плавно уменьшается от оси ОВ к оболочке. При таком градиентном профиле скорость распространения лучей вблизи оси волокна меньше, чем в области, прилегающей к оболочке. В результате, с увеличением протяженности траектории направляемых лучей на отрезке волокна возрастает их скорость распространения вдоль траектории. Чем больше длина пути, тем больше скорость. Это обеспечивает выравнивание времени распространения лучей и, соответственно, снижение модовой дисперсии. Оптимальным с точки зрения минимизации модовой дисперсии является параболический профиль.

Полоса пропускания многомодовых волокон характеризуется коэффициентом широкополосности DF , МГц. км, значение которого указывается в паспортных данных ОВ на длинах волн, соответствующих первому и второму окнам прозрачности. Полоса пропускания для типовых многомодовых оптических волокон составляет 400…2000 МГц. км.

Многомодовые оптические находят применение на локальных сетях, в центрах обработки данных, ведомственных сетях нбоьшой протяженности. С системами спктрального уплотнения не используются.



В одномодовых ОВ распространяется только одна основная мода и модовой дисперсии нет.

Основным фактором, ограничивающим протяженность участков регенерации высокоскоростных ВОЛП, является хроматическая дисперсия. В рекомендациях Международного союза электросвязи ITU-T G.650 приводится следующее определение: хроматическая дисперсия (ХД) - это уширение светового импульса в оптическом волокне, вызванное разностью групповых скоростей различных длин волн, составляющих спектр оптического информационного сигнала. Длительность оптического импульса на выходе протяженного оптического волокна определяется относительной групповой задержкой самой медленной спектральной компоненты относительно самой быстрой. Таким образом, влияние ХД пропорционально ширине спектра источника излучения. С увеличением протяженности линии передачи и скорости передачи информации влияние хроматической дисперсии возрастает.

Вклад в ХД вносят следующие составляющие: материальная и волноводная дисперсия. Важной оптической характеристикой стекла, используемого при изготовлении волокна, является дисперсия показателя преломления, проявляющаяся в зависимости скорости распространения сигнала от длины волны – материальная дисперсия. Кроме этого, при производстве одномодового волокна, когда кварцевая нить вытягивается из стеклянной заготовки, в той или иной степени возникают отклонения в геометрии волокна и в радиальном профиле показателя преломления. Сама геометрия волокна вместе с отклонениями от идеального профиля также вносит существенный вклад в зависимость скорости распространения сигнала от длины волны, это – волноводная дисперсия.



Хроматическая дисперсия определяется совместным действием материальной D M (l ) и волноводной дисперсий D B (l )

D (l )= D M (l )+ D B (l )

Материальная дисперсия определяется дисперсионными свойствами материала – кварца,

D M = - l ¶ 2 n . c l 2

Волноводная дисперсия D B (l ) обусловлена зависимостью групповой

скорости распространения моды от длины волны, в первую очередь определяется профилем показателя преломления сердцевины волокна и внутренней оболочки.

Достаточно часто для оценки волноводной дисперсии используют следующее соотношение:

где V – нормированная частота; b – нормированная постоянная распространения, которая связана с b следующим соотношением:

получила название нормированный параметр волноводной дисперсии.

Рис. 3.13. Спектр хроматической дисперсии стандартного ступенчатого волокна

Количественно хроматическую дисперсию ОВ оценивают коэффициентом D с размерностью пс/(нм. км).Хроматическая дисперсия волокна в

пикосекундах (пс) на участке протяженностью L км, равна

s = D × L × Dl

где Dl - полоса длин волн источника оптического излучения, нм.

Основными параметрами хроматической дисперсии являются:

1. Длина волны нулевой дисперсии l 0 , нм. На этой длине волны

материальная и волноводная составляющие компенсируют друг друга и хроматическая дисперсия обращается в нуль.

2. Коэффициент хроматической дисперсии, пс/(нм×км). Данный параметр определяет уширение оптического импульса, распространяющегося на расстояние в 1 км при ширине спектра источника 1 нм.

3. Наклон дисперсионной характеристики S 0 определяется как касательная

к дисперсионной кривой на длине волны l 0 (см. рис. 3.13). Аналогично может

быть определен наклон S в любой точке спектра.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.