Как узнать какая система координат координатам. Системы координат

Тема №2: Подготовка карты к работе, измерение по карте. Определение координат и целеуказание.

Занятие №2 Измерения на карте.

Вопрос 1: Плоские прямоугольные координаты на картах, определение прямоугольных координат на карте, нанесение объектов на карту.

Прямоугольные координаты (плоские) - линейные величины (абсцисса Х и ордината У), определяющие положение точки на плоскости (карте) относительно двух взаимно перпендикулярных осей Х и У. Абсцисса Х и ордината V точки Л - расстояния от начала координат до оснований перпендикуляров, опущенных из точки А на соответствующие оси, с указанием знака.

В топографии и геодезии ориентирование производится по северу со счетом углов по ходу часовой стрелки. Поэтому для сохранения знаков тригонометрических функций положение осей координат, принятое в математике, повернуто на 90° (за ось Х принята вертикальная линия, за ось У-горизонтальная).

Прямоугольные координаты (Гаусса) на топографических картах применяются по координатным зонам на которые делится поверхность Земли при изображении ее на картах в Проекции Гаусса (см. п.1.4). Координатные зоны - части земной поверхности, ограниченные меридианами с долготой, кратной 6°.

Рис. 4. Система прямоугольных координат на топографических картах:

a - одной зоны; б - части зоны

Счет зон идет от Гринвичского меридиана с запада на восток. Первая зона ограничена меридианами 0 и 6°, вторая - 6 и 12°, третья -12 и 18° и т. д. Территория СССР располагается -в 29 зонах (от 4-й до 32-й включительно). Протяженность каждой зоны с севера на юг составляет примерно 20000 км. Ширина зоны на экваторе равна примерно 670 км, на широте 40°- 510, на широте 50°-430, на широте 60°-340 км.

Все топографические карты в пределах одной зоны имеют общую систему прямоугольных координат. Началом координат в каждой зоне служит точка пересечения среднего (осевого) меридиана зоны с экватором (рис. 15), средний меридиан зоны соответствует оси абсцисс (X), а экватор-оси ординат (У). При таком расположении координатных осей абсциссы точек, расположенных южнее экватора, и ординаты точек, расположенных западнее среднего меридиана, будут иметь отрицательные значения. Для удобства пользования координатами на топографических картах принят условный счет ординат, исключающий отрицательные значения координаты У. Это вызвано тем, что отсчет ординат идет не от нуля, а от величины 500 км, т. е. начало координат в каждой зоне как бы перенесено на 500 км влево вдоль оси «У». Кроме того, для однозначного определения положения точки по прямоугольным координатам на земном шаре к значению координаты у слева приписывается номер зоны (однозначное или двузначное число). Если, например, точка имеет координаты х =5 650 450; у =3620840, то это значит, что она расположена в третьей зоне на удалении 120 км 840 м (620840-500000) к востоку от среднего меридиана зоны и на удалении 5650 км 450 м к северу от экватора.

Полные координаты - прямоугольные координаты, указанные полностью, без каких-либо сокращений. В примере, приведенном выше, даны полные координаты точки.

Сокращенные координаты применяются для ускорения целеуказания по топографической карте. В этом случае указывают только десятки и единицы километров и метры, например, х = 50450; у = 20840.

Сокращенные координаты нельзя применять, если район действий охватывает пространство протяженностью более 100 км по широте или долготе.

Координатная (километровая) сетка (рис. 16) - сетка квадратов на топографических картах, образованная горизонтальными и вертикальными линиями, проведенными параллельно -осям прямоугольных координат через определенные интервалы; на карте масштаба 1: 25 000 - через 4 см, на картах масштабов 1:50000, 1:100 000 и 1:200 000 - через 2 см. Эти линии называются километровыми.

На карте масштаба 1:500 000 координатная сетка полностью не показывается, наносятся только выходы километровых линий по сторонам рамки через 2 см. При необходимости, по этим выходам координатная сетка может быть прочерчена на карте.

Координатная сетка используется для определения прямоугольных координат и нанесения на карту точек, объектов, целей по их координатам, для целеуказания и отыскания на карте различных объектов (пунктов), для ориентирования карты на местности, измерения дирекционных углов, приближенного определения расстояний и площадей.

Рис. 16. Координатная (километровая) сетка на топографических

картах различных масштабов

Километровые линии на картах подписываются у их выходов за рамкой листа и в девяти местах внутри листа карты. Ближайшие к углам рамки километровые линии, а также ближайшее к северо-западному углу пересечение линий подписываются полностью, остальные сокращенно, двумя цифрами (указываются только десятки и единицы километров). Подписи у горизонтальных линий соответствуют расстояниям от оси ординат (от экватора) в километрах. Например, подпись- 6082 в правом верхнем углу (рис. 17) показывает, что данная линия отстоя от экватора на удалении 6082 км

Подписи у вертикальных линий обозначают номер зоны (одна или две первые цифры) в расстояние в километрах (всегда три цифры) от начала координат, условно перенесенного к западу от среднего меридиана на 500 км. Например, подпись 4308 в левом верхнем углу означает: 4 - номер зоны, 308 - расстояние от условного начала координат в километрах.

Рис.17. Дополнительная координатная сетка

Дополнительная координатная (километровая) сетка предназначается для преобразования координат одной зоны в систему координат другой, соседней зоны. Она может быть нанесена на топографических картах масштабов 1:25 000, 1:50 000, 1:100 000 и 1:200 000 по выходам километровых линий в смежной западной или восточной зоне Выходы километровых линий в виде черточек с соответствующими подписями даются на картах, расположенных на протяжении 2° к востоку и западу от граничных меридианов зоны.

На рис. 17 черточки на внешней стороне западной рамки с подписями 816082 и на северной стороне рамки с подписями 369394 и т д обозначают выходы километровых линий в системе координат смежной (третьей) зоны. При необходимости дополнительная координатная сетка прочерчивается на листе карты путем соединения одноименных черточек на противоположных сторонах рамки. Вновь построенная сетка является продолжением километровой сетки листа карты смежной зоны и должна полностью совпадать (смыкаться) с ней при склейке карты.

Определение прямоугольных координат точек по карте.

Вначале измеряют по перпендикуляру расстояние от точки до нижней километровой линии, по масштабу определяют "его действительную величину в метрах и приписывают справа к подписи километровой линии. При длине отрезка более километра вначале суммируют километры, а затем также приписывают число метров справа. Это будет координата х (абсцисса).

Таким же образом определяют и координату у (ординату), только расстояние от точки измеряют до левой стороны квадрата.

Пример определения координат точки А показан на рис 18- х = 5 877 100. у = 3 302 700

Здесь же дан пример определения координат точки В, расположенной у рамки листа карты в неполном квадрате- х == 5 874 850, у = 3 298 800

Измерения выполняют циркулем-измерителем, линейкой или координатомером. Простейшим координатомером служит офицерская линейка, на двух взаимно перпендикулярных краях, которой имеются миллиметровые деления и надписи х и у.

При определении координат координатомер накладывают на квадрат, в котором располагается точка, и, совместив вертикальную шкалу с его левой стороной, а горизонтальную--с точкой, как показано на рис 18, снимают отсчеты.

Отсчеты - в миллиметрах (десятые миллиметра отсчитывают на глаз) в соответствии с масштабом карты преобразуют в действительные величины - километры и метры, а затем величину, полученною по вертикальной шкале, суммируют (если она больше километра) с оцифровкой нижней стороны квадрата или приписывают к ней справа (если величина меньше километра). Это будет координата х точки.

Таким же образом получают и координату у величину, соответствующую отсчету по горизонтальной шкале, только суммирование производят с оцифровкой левой стороны квадрата.

На рис. 18 показан пример определения прямоугольных координат точки С: х = 5 873 300; у "3300 800.

Нанесение точек на карту по прямоугольным координатам. Прежде всего по координатам в километрах и оцифровкам километровых линий находят на карте квадрат, в котором должна быть расположена точка.

Квадрат местонахождения точки на карте масштаба 1:50 000, где километровые линии проведены через 1 км, находят непосредственно по координатам объекта в километрах. На карте масштаба 1:100000 километровые линии проведены через 2 км и подписаны четными числами, поэтому если одна или две координаты точки в километрах нечетные числа, то нужно находить квадрат, стороны которого подписаны числами на единицу меньше соответствующей координаты в километрах.

На карте масштаба 1:200 000 километровые линии проведены через 4 км и подписаны числами, кратными 4. Они могут быть меньше соответствующей координаты точки на 1,2 или 3 км. Например, если даны координаты точки (в километрах) х= 6755 и у = 4613, то стороны квадрата будут иметь оцифровки 6752 и 4612.

После нахождения квадрата, в котором расположена точка, рассчитывают ее удаление от нижней стороны квадрата и полученное расстояние откладывают в масштабе карты от нижних углов квадрата вверх. К полученным точкам прикладывают линейку и от левой стороны квадрата также в масштабе карты откладывают расстояние, равное удалению объекта от этой стороны.

На рис. 19 показан пример нанесения на карту точки Л по координатам х == 3 768 850, у = 29 457 500.

При работе с координатомером вначале также находят квадрат, в котором расположена точка. На этот квадрат накладывают координатомер, совмещают его вертикальную шкалу с западной стороной квадрата так, чтобы против нижней стороны квадрата был отсчет, соответствующий координате х. Затем, не изменяя положения координатомера, находят на горизонтальной шкале отсчет, соответствующий координате у. Точка против отсчета покажет ее местоположение, соответствующее данным координатам.

На рис. 19 показан пример нанесения на карту точки В, расположенной в неполном квадрате, по координатам ж =3 765 500; у =29 457 650.

Рис.19

В данном случае координатомер наложен так, что горизонтальная шкала его совмещена с северной стороной квадрата, а отсчет против западной его стороны соответствует разности координаты у точки и оцифровки этой стороны (29457 км 650 м-29456 км==1 км 650 м). Отсчет, соответствующий разности (шифровки северной стороны квадрата и координаты х (Э766 км - 3765 км 500 м), отложен по вертикальной шкале вниз. Местоположение точки В будет против штриха у отсчета 500 м.

Глава I. Векторы на плоскости и в пространстве

§ 13. Переход от одной прямоугольной декартовой системы координат к другой

Данную тему мы предлагаем Вам рассмотреть в двух вариантах.

1) По учебнику И.И.Привалов "Аналитическая геометрия" (учебник для высших технических учебных заведений 1966 г.)

И.И.Привалов "Аналитическая геометрия"

§ 1. Задача преобразования координат.

Положение точки на плоскости определяется двумя координатами относительно некоторой системы координат. Координаты точки изменятся, если мы выберем другую систему координат.

Задача преобразования координат состоит в том, чтобы, зная координаты точки в одной системе координат, найти ее координаты в другой системе .

Эта задача будет разрешена, если мы установим формулы, связывающие координаты произвольной точки по двум системам, причем в коэффициенты этих формул войдут постоянные величины, определяющие взаимное положение систем.

Пусть даны две декартовы системы координат хОу и XO 1 Y (рис. 68).

Положение новой системы XO 1 Y относительно старой системы хОу будет определено, если известны координаты а и b нового начала O 1 по старой системе и угол α между осями Ох и О 1 Х . Обозначим через х и у координаты произвольной точки М относительно старой системы, через X и Y-координаты той же точки относительно новой системы. Наша задача заключается в том, чтобы старые координаты х и у выразить через новые X и Y. В полученные формулы преобразования должны, очевидно, входить постоянные a, b и α .

Решение этой общей задачи мы получим из рассмотрения двух частных случаев.

1. Меняется начало координат, направления же осей остаются неизменными (α = 0).

2. Меняются направления осей, начало же координат остается неизменным (а = b = 0).

§ 2. Перенос начала координат.

Пусть даны две системы декартовых координат с разными началами O и O 1 и одинаковыми направлениями осей (рис. 69).

Обозначим через а и b координаты нового начала О 1 в старой системе и через х, у и X , Y -координаты произвольной точки М соответственно в старой и новой системах. Проектируя точку М на оси О 1 Х и Ох , а также точку О 1 на ось Ох , получим на оси Ох три точки О, А и Р . Величины отрезков ОА , АР и ОР связаны следующим соотношением:

| ОА | + | АР | = | ОР |. (1)

Заметив, что | ОА | = а , | ОР | = х , | АР | = | О 1 Р 1 | = Х , перепишем равенство (1) в виде:

а + X = x или x = X + а . (2)

Аналогично, проектируя М и О 1 на ось ординат, получим:

y = Y + b (3)

Итак, старая координата равна новой плюс координата нового начала по старой системе.

Из формул (2) и (3) новые координаты можно выразить через старые:

Х = х - а , (2")

Y = y - b . (3")

§ 3. Поворот осей координат.

Пусть даны две декартовы системы координат с одинаковым началом О и разными направлениями осей (рис. 70).

Пусть α есть угол между осями Ох и ОХ . Обозначим через х, у и X, Y координаты произвольной точки М соответственно в старой и новой системах:

х = | ОР | , у = | РM | ,

X = | ОР 1 |, Y = | Р 1 M |.

Рассмотрим ломаную линию ОР 1 MP и возьмем ее проекцию на ось Ох . Замечая, что проекция ломаной линии равна проекции замыкающего отрезка (гл. I, § 8) имеем:

ОР 1 MP = | ОР |. (4)

С другой стороны, проекция ломаной линии равна сумме проекций ее звеньев (гл. I, § 8); следовательно, равенство (4) запишется так:

пр ОР 1 + пр Р 1 M + пp MP = | ОР | (4")

Так как проекция направленного отрезка равна его величине, умноженной на косинус угла между осью проекций и осью, на которой лежит отрезок (гл. I, § 8), то

пр ОР 1 = X cos α

пр Р 1 M = Y cos (90° + α ) = - Y sin α ,

пp MP = 0.

Отсюда равенство (4") нам дает:

x = X cos α - Y sin α . (5)

Аналогично, проектируя ту же ломаную на ось Оу , получим выражение для у . В самом деле, имеем:

пр ОР 1 + пр Р 1 M + пp MP = пp ОР = 0.

Заметив, что

пр ОР 1 = X cos (α - 90°) = X sin α ,

пр Р 1 M = Y cos α ,

пp MP = - y ,

будем иметь:

X sin α + Y cos α - y = 0,

y = X sin α + Y cos α . (6)

Из формул (5) и (6) мы получим новые координаты X и Y выраженными через старые х и у , если разрешим уравнения (5) и (6) относительно X и Y .

Замечание. Формулы (5) и (6) могут быть получены иначе.

Из рис. 71 имеем:

х = ОР = ОМ cos (α + φ ) = ОМ cos α cos φ - ОМ sin α sin φ ,

у = РМ = ОМ sin (α + φ ) = ОМ sin α cos φ + ОМ cos α sin φ .

Так как (гл. I, § 11) OM cos φ = X , ОМ sin φ =Y , то

x = X cos α - Y sin α , (5)

y = X sin α + Y cos α . (6)

§ 4. Общий случай.

Пусть даны две декартовы системы координат с разными началами и разными направлениями осей (рис. 72).

Обозначим через а и b координаты нового начала О , по старой системе, через α -угол поворота координатных осей и, наконец, через х, у и X, Y - координаты произвольной точки М соответственно по старой и новой системам.

Чтобы выразить х и у через X и Y , введем вспомогательную систему координат x 1 O 1 y 1 , начало которой поместим в новом начале О 1 , а направления осей возьмем совпадающими с направлениями старых осей. Пусть x 1 и y 1 , обозначают координаты точки М относительно этой вспомогательной системы. Переходя от старой системы координат к вспомогательной, имеем (§ 2):

х = х 1 + а , у = у 1 + b .

х 1 = X cos α - Y sin α , y 1 = X sin α + Y cos α .

Заменяя х 1 и y 1 в предыдущих формулах их выражениями из последних формул, найдем окончательно:

x = X cos α - Y sin α + a

y = X sin α + Y cos α + b (I)

Формулы (I) содержат как частный случай формулы §§ 2 и 3. Так, при α = 0 формулы (I) обращаются в

x = X + а , y = Y + b ,

а при а = b = 0 имеем:

x = X cos α - Y sin α , y = X sin α + Y cos α .

Из формул (I) мы получим новые координаты X и Y выраженными через старые х и у , если уравнения (I) разрешим относительно X и Y .

Отметим весьма важное свойство формул (I): они линейны относительно X и Y , т. е. вида:

x = AX + BY + C , y = A 1 X + B 1 Y + C 1 .

Легко проверить, что новые координаты X и Y выразятся через старые х и у тоже формулами первой степени относительно х и у.

Г.Н.Яковлев "Геометрия"

§ 13. Переход от одной прямоугольной декартовой системы координат к другой

Выбором прямоугольной декартовой системы координат устанавливается взаимно однозначное соответствие между точками плоскости и упорядоченными парами действительных чисел. Это означает, что каждой точке плоскости соответствует единственная пара чисел и каждой упорядоченной паре действительных чисел соответствует единственная точка.

Выбор той или иной системы координат ничем не ограничен и определяется в каждом конкретном случае только соображениями удобства. Часто одно и то же множество приходится рассматривать в разных координатных системах. Одна и та же точка в разных системах имеет, очевидно, различные координаты. Множество точек (в частности, окружность, парабола, прямая) в разных системах координат задается различными уравнениями.

Выясним, как преобразуются координаты точек плоскости при переходе от одной координатной системы к другой.

Пусть на плоскости заданы две прямоугольные системы координат: О, i, j и О", i", j" (рис. 41).

Первую систему с началом в точке О и базисными векторами i и j условимся называть старой, вторую - с началом в точке О" и базисными векторами i" и j" - новой.

Положение новой системы относительно старой будем считать известным: пусть точка О" в старой системе имеет координаты (a;b ), a вектор i" образует с вектором i угол α . Угол α отсчитываем в направлении, противоположном движению часовой стрелки.

Рассмотрим произвольную точку М. Обозначим ее координаты в старой системе через (х;у ), в новой - через (х";у" ). Наша задача - установить зависимость между старыми и новыми координатами точки М.

Соединим попарно точки О и О", О" и М, О и М. По правилу треугольника получаем

OM > = OO" > + O"M > . (1)

Разложим векторы OM > и OO" > по базисным векторам i и j , а вектор O"M > по базисным векторам i" и j" :

OM > = xi + yj , OO" > = ai + bj , O"M > = x"i "+ y"j "

Теперь равенство (1) можно записать так:

xi + yj = (ai + bj ) + (x"i "+ y"j "). (2)

Новые базисные векторы i" и j" раскладываются по старым базисным векторам i и j следующим образом:

i" = cos α i + sin α j ,

j" = cos ( π / 2 + α ) i + sin ( π / 2 + α ) j = - sin α i + cos α j .

Подставив найденные выражения для i" и j" в формулу (2), получим векторное равенство

xi + yj = ai + bj + х" (cos α i + sin α j ) + у" (- sin α i + cos α j )

равносильное двум числовым равенствам:

х = а + х" cos α - у" sin α ,
у
= b + х" sin α + у" cos α

Формулы (3) дают искомые выражения для старых координат х и у точки через ее новые координаты х" и у" . Для того чтобы найти выражения для новых координат через старые, достаточно решить систему уравнении (3) относительно неизвестных х" и у" .

Итак, координаты точек при переносе начала координат в точку (а; b ) и повороте осей на угол α преобразуются по формулам (3).

Если изменяется только начало координат, а направления осей остаются прежними, то, полагая в формулах (3) α = 0, получаем

Формулы (5) называют формулами поворота .

Задача 1. Пусть координаты нового начала в старой системе (2; 3), а координаты точки А в старой системе (4; -1). Найти координаты точки А в новой системе, если направления осей остаются прежними.

По формулам (4) имеем

Ответ. A (2; -4)

Задача 2. Пусть координаты точки Р в старой системе (-2; 1), а в новой системе, направления осей которой те же самые, координаты этой точки (5; 3). Найти координаты нового начала в старой системе.

А По формулам (4) получаем

- 2 = а + 5
1 = b + 3

откуда а = - 7, b = - 2.

Ответ. (-7; -2).

Задача 3. Координаты точки А в новой системе (4; 2). Найти координаты этой точки в старой системе, если начало координат осталось прежним, а оси координат старой системы повернуты на угол α = 45°.

По формулам (5) находим

Задача 4. Координаты точки A в старой системе (2 √3 ; - √3 ). Найти координаты этой точки в новой системе, если начало координат старой системы перенесено в точку (-1;-2), а оси повернуты на угол α = 30°.

По формулам (3) имеем

Решив эту систему уравнений относительно х" и у" , найдем: х" = 4, у" = -2.

Ответ. A (4; -2).

Задача 5. Дано уравнение прямой у = 2х - 6. Найти уравнение той же прямой в новой системе координат, которая получена из старой системы поворотом осей на угол α = 45°.

Формулы поворота в данном случае имеют вид

Заменив в уравнении прямой у = 2х - 6 старые переменные х и у новыми, получим уравнение

√ 2 / 2 (x" + y" ) = 2 √ 2 / 2 (x" - y" ) - 6 ,

которое после упрощений принимает вид y" = x" / 3 - 2√2

Для определения положения точек в геодезии применяют пространственные прямоугольные, геодезические и плоские прямоугольные координаты.

Пространственные прямоугольные координаты . Начало системы координат расположено в центре O земного эллипсоида (рис. 2.2).

Ось Z направлена по оси вращения эллипсоида к северу. Ось Х лежит в пересечении плоскости экватора с начальным - гринвичским меридианом. Ось Y направлена перпендикулярно осям Z и X на восток.

Геодезические координаты . Геодезическими координатами точки являются ее широта, долгота и высота (рис. 2.2).

Геодезической широтой точки М называется угол В , образованный нормалью к поверхности эллипсоида, проходящей через данную точку, и плоскостью экватора.

Широта отсчитывается от экватора к северу и югу от 0° до 90° и называется северной или южной. Северную широту считают положительной, а южную - отрицательной.

Плоскости сечения эллипсоида, проходящие через ось OZ , называются геодезическими меридианами .

Геодезической долготой точки М называется двугранный угол L , образованный плоскостями начального (гринвичского) геодезического меридиана и геодезического меридиана данной точки.

Долготы отсчитывают от начального меридиана в пределах от 0° до 360° на восток, или от 0° до 180° на восток (положительные) и от 0° до 180° на запад (отрицательные).

Геодезической высотой точки М является ее высота Н над поверхностью земного эллипсоида.

Геодезические координаты с пространственными прямоугольными координатами связаны формулами

X = (N + H )cosB cosL ,

Y = (N+H )cosB sinL ,

Z = [(1 - e 2 ) N+H ] sinB ,

где e - первый эксцентриситет меридианного эллипса и N -радиус кривизны первого вертикала.При этом N=a/ (1 - e 2 sin 2 B ) 1/2 .

Геодезические и пространственные прямоугольные координаты точек определяют с помощью спутниковых измерений, а также путем их привязки геодезическими измерениями к точкам с известными координатами.

Отметим, что наряду с геодезическими существуют еще астрономические широта и долгота. Астрономическая широта j это - угол, составленный отвесной линией в данной точке с плоскостью экватора. Астрономическая долгота l - угол между плоскостями Гринвичского меридиана и проходящего через отвесную линию в данной точке астрономического меридиана. Астрономические координаты определяют на местности из астрономических наблюдений.

Астрономические координаты отличаются от геодезических потому, что направления отвесных линий не совпадают с направлениями нормалей к поверхности эллипсоида. Угол между направлением нормали к поверхности эллипсоида и отвесной линией в данной точке земной поверхности называется уклонением отвесной линии .


Обобщением геодезических и астрономических координат является термин - географические координаты .

Плоские прямоугольные координаты . Для решения задач инженерной геодезии от пространственных и геодезических координат переходят к более простым - плоским координатам, позволяющим изображать местность на плоскости и определять положение точек двумя координатами х и у .

Поскольку выпуклую поверхность Земли изобразить на плоскости без искажений нельзя, введение плоских координат возможно только на ограниченных участках, где искажения так малы, что ими можно пренебречь. В России принята система прямоугольных координат, основой которой является равноугольная поперечно-цилиндрическая проекция Гаусса . Поверхность эллипсоида изображается на плоскости по частям, называемым зонами. Зоны представляют собой сферические двуугольники, ограниченные меридианами, и простирающиеся от северного полюса до южного (рис. 2.3). Размер зоны по долготе равен 6°. Центральный меридиан каждой зоны называется осевым. Нумерация зон идет от Гринвича к востоку.

Долгота осевого меридиана зоны с номером N равна:

l 0 = 6°× N - 3° .

Осевой меридиан зоны и экватор изображаются на плоскости прямыми линиями (рис. 2.4). Осевой меридиан принимают за ось абсцисс x , а экватор - за ось ординат y. Их пересечение (точка O ) служит началом координат данной зоны.

Чтобы избежать отрицательных значений ординат, координаты пересечения принимают равными x 0 = 0, y 0 = 500 км, что равносильно смещению оси х к западу на 500 км.

Чтобы по прямоугольным координатам точки можно было судить, в какой зоне она расположена, к ординате y слева приписывают номер координатной зоны.

Пусть например, координаты точки А имеют вид:

x А = 6 276 427 м

y А = 12 428 566 м

Эти координаты указывают на то, что точка А находится на расстоянии 6276427 м от экватора, в западной части (y < 500 км) 12-ой координатной зоны, на расстоянии 500000 - 428566 = 71434 м от осевого меридиана.

Для пространственных прямоугольных , геодезических и плоских прямоугольных координат в России принята единая система координат СК-95, закрепленная на местности пунктами государственной геодезической сети и построенная по спутниковым и наземным измерениям по состоянию на эпоху 1995 г.

Местные системы прямоугольных координат. При строительстве различных объектовчасто используют местные (условные) системы координат, в которых направления осей и начало координат назначают, исходя из удобства их использования в ходе строительства и последующей эксплуатации объекта.

Так , при съемке железнодорожной станции ось у направляют по оси главного железнодорожного пути в направлении возрастания пикетажа, а ось х - по оси здания пассажирского вокзала.

При строительстве мостовых переходов ось х обычно совмещают с осью моста, а ось y идет в перпендикулярном направлении.

При строительстве крупных промышленных и гражданских объектов оси x и y направляют параллельно осям строящихся зданий.

Упорядоченная система двух или трёх пересекающихся перпендикулярных друг другу осей с общим началом отсчёта (началом координат) и общей единицей длины называется прямоугольной декартовой системой координат .

Общая декартова система координат (аффинная система координат ) может включать и не обязательно перпендикулярные оси. В честь французского математика Рене Декарта (1596-1662) названа именно такая система координат, в которой на всех осях отсчитывается общая единица длины и оси являются прямыми.

Прямоугольная декартова система координат на плоскости имеет две оси, а прямоугольная декартова система координат в пространстве - три оси. Каждая точка на плоскости или в пространстве определяется упорядоченным набором координат - чисел в соответствии единице длины системы координат.

Заметим, что, как следует из определения, существует декартова система координат и на прямой, то есть в одном измерении. Введение декартовых координат на прямой представляет собой один из способов, с помощью которого любой точке прямой ставится в соответствие вполне определённое вещественное число, то есть координата.

Метод координат, возникший в работах Рене Декарта, ознаменовал собой революционную перестройку всей математики. Появилась возможность истолковывать алгебраические уравнения (или неравенства) в виде геометрических образов (графиков) и, наоборот, искать решение геометрических задач с помощью аналитических формул, систем уравнений. Так, неравенство z < 3 геометрически означает полупространство, лежащее ниже плоскости, параллельной координатной плоскости xOy и находящейся выше этой плоскости на 3 единицы.

С помощью декартовой системы координат принадлежность точки заданной кривой соответствует тому, что числа x и y удовлетворяют некоторому уравнению. Так, координаты точки окружности с центром в заданной точке (a ; b ) удовлетворяют уравнению (x - a )² + (y - b )² = R ² .

Прямоугольная декартова система координат на плоскости

Две перпендикулярные оси на плоскости с общим началом и одинаковой масштабной единицей образуют декартову прямоугольную систему координат на плоскости . Одна из этих осей называется осью Ox , или осью абсцисс , другую - осью Oy , или осью ординат . Эти оси называются также координатными осями. Обозначим через M x и M y соответственно проекции произвольной точки М на оси Ox и Oy . Как получить проекции? Проведём через точку М Ox . Эта прямая пересекает ось Ox в точке M x . Проведём через точку М прямую, перпендикулярную оси Oy . Эта прямая пересекает ось Oy в точке M y . Это показано на рисунке ниже.

x и y точки М будем называть соответственно величины направленных отрезков OM x и OM y . Величины этих направленных отрезков рассчитываются соответственно как x = x 0 - 0 и y = y 0 - 0 . Декартовы координаты x и y точки М абсциссой и ординатой . Тот факт, что точка М имеет координаты x и y , обозначается так: M (x , y ) .

Координатные оси разбивают плоскость на четыре квадранта , нумерация которых показана на рисунке ниже. На нём же указана расстановка знаков координат точек в зависимости от их расположения в том или ином квадранте.

Помимо декартовых прямоугольных координат на плоскости часто рассматривается также полярная система координат. О способе перехода от одной системы координат к другой - в уроке полярная система координат .

Прямоугольная декартова система координат в пространстве

Декартовы координаты в пространстве вводятся в полной аналогии с декартовыми координатами на плоскости.

Три взаимно перпендикулярные оси в пространстве (координатные оси) с общим началом O и одинаковой масштабной единицей образуют декартову прямоугольную систему координат в пространстве .

Одну из указанных осей называют осью Ox , или осью абсцисс , другую - осью Oy , или осью ординат , третью - осью Oz , или осью аппликат . Пусть M x , M y M z - проекции произвольной точки М пространства на оси Ox , Oy и Oz соответственно.

Проведём через точку М Ox Ox в точке M x . Проведём через точку М плоскость, перпендикулярную оси Oy . Эта плоскость пересекает ось Oy в точке M y . Проведём через точку М плоскость, перпендикулярную оси Oz . Эта плоскость пересекает ось Oz в точке M z .

Декартовыми прямоугольными координатами x , y и z точки М будем называть соответственно величины направленных отрезков OM x , OM y и OM z . Величины этих направленных отрезков рассчитываются соответственно как x = x 0 - 0 , y = y 0 - 0 и z = z 0 - 0 .

Декартовы координаты x , y и z точки М называются соответственно её абсциссой , ординатой и аппликатой .

Попарно взятые координатные оси располагаются в координатных плоскостях xOy , yOz и zOx .

Задачи о точках в декартовой системе координат

Пример 1.

A (2; -3) ;

B (3; -1) ;

C (-5; 1) .

Найти координаты проекций этих точек на ось абсцисс.

Решение. Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox , а следовательно имеет абсциссу, равную абсциссе самой точки, и ординату (координату на оси Oy , которую ось абсцисс пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось абсцисс:

A x (2; 0) ;

B x (3; 0) ;

C x (-5; 0) .

Пример 2. В декартовой системе координат на плоскости даны точки

A (-3; 2) ;

B (-5; 1) ;

C (3; -2) .

Найти координаты проекций этих точек на ось ординат.

Решение. Как следует из теоретической части этого урока, проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy , а следовательно имеет ординату, равную ординате самой точки, и абсциссу (координату на оси Ox , которую ось ординат пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось ординат:

A y (0; 2) ;

B y (0; 1) ;

C y (0; -2) .

Пример 3. В декартовой системе координат на плоскости даны точки

A (2; 3) ;

B (-3; 2) ;

C (-1; -1) .

Ox .

Ox Ox Ox , будет иметь такую же абсциссу, что и данная точка, и ординату, равную по абсолютной величине ординате данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Ox :

A" (2; -3) ;

B" (-3; -2) ;

C" (-1; 1) .

Решить задачи на декартову систему координат самостоятельно, а затем посмотреть решения

Пример 4. Определить, в каких квадрантах (четвертях, рисунок с квадрантами - в конце параграфа "Прямоугольная декартова система координат на плоскости") может быть расположена точка M (x ; y ) , если

1) xy > 0 ;

2) xy < 0 ;

3) x y = 0 ;

4) x + y = 0 ;

5) x + y > 0 ;

6) x + y < 0 ;

7) x y > 0 ;

8) x y < 0 .

Пример 5. В декартовой системе координат на плоскости даны точки

A (-2; 5) ;

B (3; -5) ;

C (a ; b ) .

Найти координаты точек, симметричных этим точкам относительно оси Oy .

Продолжаем решать задачи вместе

Пример 6. В декартовой системе координат на плоскости даны точки

A (-1; 2) ;

B (3; -1) ;

C (-2; -2) .

Найти координаты точек, симметричных этим точкам относительно оси Oy .

Решение. Поворачиваем на 180 градусов вокруг оси Oy направленный отрезок, идущий от оси Oy до данной точки. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно оси Oy , будет иметь такую же ординату, что и данная точка, и абсциссу, равную по абсолютной величине абсциссе данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Oy :

A" (1; 2) ;

B" (-3; -1) ;

C" (2; -2) .

Пример 7. В декартовой системе координат на плоскости даны точки

A (3; 3) ;

B (2; -4) ;

C (-2; 1) .

Найти координаты точек, симметричных этим точкам относительно начала координат.

Решение. Поворачиваем на 180 градусов вокруг начала координат направленный отрезок, идущий от начала координат к данной точке. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно начала координат, будет иметь абсциссу и ординату, равные по абсолютной величине абсциссе и ординате данной точки, но противоположные им по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно начала координат:

A" (-3; -3) ;

B" (-2; 4) ;

C (2; -1) .

Пример 8.

A (4; 3; 5) ;

B (-3; 2; 1) ;

C (2; -3; 0) .

Найти координаты проекций этих точек:

1) на плоскость Oxy ;

2) на плоскость Oxz ;

3) на плоскость Oyz ;

4) на ось абсцисс;

5) на ось ординат;

6) на ось апликат.

1) Проекция точки на плоскость Oxy расположена на самой этой плоскости, а следовательно имеет абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxy :

A xy (4; 3; 0) ;

B xy (-3; 2; 0) ;

C xy (2; -3; 0) .

2) Проекция точки на плоскость Oxz расположена на самой этой плоскости, а следовательно имеет абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxz :

A xz (4; 0; 5) ;

B xz (-3; 0; 1) ;

C xz (2; 0; 0) .

3) Проекция точки на плоскость Oyz расположена на самой этой плоскости, а следовательно имеет ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную нулю. Итак получаем следующие координаты проекций данных точек на Oyz :

A yz (0; 3; 5) ;

B yz (0; 2; 1) ;

C yz (0; -3; 0) .

4) Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox , а следовательно имеет абсциссу, равную абсциссе самой точки, а ордината и апликата проекции равны нулю (поскольку оси ординат и апликат пересекают ось абсцисс в точке 0). Получаем следующие координаты проекций данных точек на ось абсцисс:

A x (4; 0; 0) ;

B x (-3; 0; 0) ;

C x (2; 0; 0) .

5) Проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy , а следовательно имеет ординату, равную ординате самой точки, а абсцисса и апликата проекции равны нулю (поскольку оси абсцисс и апликат пересекают ось ординат в точке 0). Получаем следующие координаты проекций данных точек на ось ординат:

A y (0; 3; 0) ;

B y (0; 2; 0) ;

C y (0; -3; 0) .

6) Проекция точки на ось апликат расположена на самой оси апликат, то есть оси Oz , а следовательно имеет апликату, равную апликате самой точки, а абсцисса и ордината проекции равны нулю (поскольку оси абсцисс и ординат пересекают ось апликат в точке 0). Получаем следующие координаты проекций данных точек на ось апликат:

A z (0; 0; 5) ;

B z (0; 0; 1) ;

C z (0; 0; 0) .

Пример 9. В декартовой системе координат в пространстве даны точки

A (2; 3; 1) ;

B (5; -3; 2) ;

C (-3; 2; -1) .

Найти координаты точек, симметричных этим точкам относительно:

1) плоскости Oxy ;

2) плоскости Oxz ;

3) плоскости Oyz ;

4) оси абсцисс;

5) оси ординат;

6) оси апликат;

7) начала координат.

1) "Продвигаем" точку по другую сторону оси Oxy Oxy , будет иметь абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную по величине апликате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxy :

A" (2; 3; -1) ;

B" (5; -3; -2) ;

C" (-3; 2; 1) .

2) "Продвигаем" точку по другую сторону оси Oxz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oxz , будет иметь абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную по величине ординате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxz :

A" (2; -3; 1) ;

B" (5; 3; 2) ;

C" (-3; -2; -1) .

3) "Продвигаем" точку по другую сторону оси Oyz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oyz , будет иметь ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную по величине абсциссе данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oyz :

A" (-2; 3; 1) ;

B" (-5; -3; 2) ;

C" (3; 2; -1) .

По аналогии с симметричными точками на плоскости и точками пространства, симметричными данным относительно плоскостей, замечаем, что в случае симметрии относительно некоторой оси декартовой системы координат в пространстве, координата на оси, относительно которой задана симметрия, сохранит свой знак, а координаты на двух других осях будут теми же по абсолютной величине, что и координаты данной точки, но противоположными по знаку.

4) Свой знак сохранит абсцисса, а ордината и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси абсцисс:

A" (2; -3; -1) ;

B" (5; 3; -2) ;

C" (-3; -2; 1) .

5) Свой знак сохранит ордината, а абсцисса и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси ординат:

A" (-2; 3; -1) ;

B" (-5; -3; -2) ;

C" (3; 2; 1) .

6) Свой знак сохранит апликата, а абсцисса и ордината поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси апликат:

A" (-2; -3; 1) ;

B" (-5; 3; 2) ;

C" (3; -2; -1) .

7) По аналогии с симметрии в случае с точками на плоскости, в случае симметрии относительно начала координат все координаты точки, симметричной данной, будут равными по абсолютной величине координатам данной точки, но противоположными им по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно начала координат.

Для решения большинства задач в прикладных науках необходимо знать местоположение объекта или точки, которое определяется с помощью применения одной из принятых систем координат. Кроме того, имеются системы высот, которые также определяют высотное местонахождение точки на

Что такое координаты

Координаты - числовые или буквенные значения, с помощью которых можно определить место, где расположена точка на местности. Как следствие, система координат - это совокупность однотипных значений, имеющих одинаковый принцип нахождения точки или объекта.

Нахождение местоположения точки требуется для решения многих практических задач. В такой науке, как геодезия, определение местонахождения точки в заданном пространстве - главная цель, на достижении которой строится вся последующая работа.

Большинство систем координат, как правило, определяют расположение точки на плоскости, ограниченной только двумя осями. Для того чтобы определить позицию точки в трехмерном пространстве, применяется также система высот. С ее помощью можно узнать точное местонахождение искомого объекта.

Кратко о системах координат, применяемых в геодезии

Системы координат определяют местоположение точки на территории задавая ей три значения. Принципы их расчета различны для каждой координатной системы.

Основные пространственные системы координат, применяемые в геодезии:

  1. Геодезические.
  2. Географические.
  3. Полярные.
  4. Прямоугольные.
  5. Зональные координаты Гаусса-Крюгера.

Все системы имеют свою начальную точку отсчета, величины для местонахождения объекта и области применения.

Геодезические координаты

Основной фигурой, применяемой для отсчета геодезических координат, является земной эллипсоид.

Эллипсоид - трехмерная сжатая фигура, которая наилучшим образом представляет собой фигуру земного шара. Ввиду того что земной шар - математически неправильная фигура, вместо нее для определения геодезических координат используют именно эллипсоид. Это облегчает осуществление многих расчетов для определения положения тела на поверхности.

Геодезические координаты определяются тремя значениями: геодезической широтой, долготой и высотой.

  1. Геодезическая широта - это угол, начало которого лежит на плоскости экватора, а конец - у перпендикуляра, проведенного к искомой точке.
  2. Геодезическая долгота - это угол, который отсчитывают от нулевого меридиана до меридиана, на котором находится искомая точка.
  3. Геодезическая высота - величина нормали, проведенной к поверхности эллипсоида вращения Земли от данной точки.

Географические координаты

Для решения высокоточных задач высшей геодезии необходимо различать геодезические и географические координаты. В системе, применяемой в инженерной геодезии, таких различий, ввиду небольшого пространства, охватываемого работами, как правило, не делают.

Для определения геодезических координат в качестве плоскости отсчета используют эллипсоид, а для определения географических - геоид. Геоид является математически неправильной фигурой, более приближенной к фактической фигуре Земли. За его уровненную поверхность принимают ту, что продолжена под уровнем моря в его спокойном состоянии.

Географическая система координат, применяемая в геодезии, описывает позицию точки в пространстве с указанием трех значений. долготы совпадает с геодезической, так как точкой отсчета также будет называемый Гринвичским. Он проходит через одноименную обсерваторию в городе Лондоне. определяется от экватора, проведенного на поверхности геоида.

Высота в системе местных координат, применяемой в геодезии, отсчитывается от уровня моря в его спокойном состоянии. На территории России и стран бывшего Союза отметкой, от которой производят определение высот, является Кронштадтский футшток. Он расположен на уровне Балтийского моря.

Полярные координаты

Полярная система координат, применяемая в геодезии, имеет другие нюансы произведения измерений. Она применяется на небольших участках местности для определения относительного местоположения точки. Началом отсчета может являться любой объект, отмеченный как исходный. Таким образом, с помощью полярных координат нельзя определить однозначное местонахождение точки на территории земного шара.

Полярные координаты определяются двумя величинами: углом и расстоянием. Угол отсчитывается от северного направления меридиана до заданной точки, определяя ее положение в пространстве. Но одного угла будет недостаточно, поэтому вводится радиус-вектор - расстояние от точки стояния до искомого объекта. С помощью этих двух параметров можно определить местоположение точки в местной системе.

Как правило, эта система координат используется для выполнения инженерных работ, проводимых на небольшом участке местности.

Прямоугольные координаты

Прямоугольная система координат, применяемая в геодезии, также используется на небольших участках местности. Главным элементом системы является координатная ось, от которой происходит отсчет. Координаты точки находятся как длина перпендикуляров, проведенных от осей абсцисс и ординат до искомой точки.

Северное направление оси Х и восточное оси У считаются положительными, а южное и западное - отрицательными. В зависимости от знаков и четвертей определяют нахождение точки в пространстве.

Координаты Гаусса-Крюгера

Координатная зональная система Гаусса-Крюгера схожа с прямоугольной. Различие в том, что она может применяться для всей территории земного шара, а не только для небольших участков.

Прямоугольные координаты зон Гаусса-Крюгера, по сути, являются проекцией земного шара на плоскость. Она возникла в практических целях для изображения больших участков Земли на бумаге. Искажения, возникающие при переносе, считаются незначительными.

Согласно этой системе, земной шар делится по долготе на шестиградусные зоны с осевым меридианом посередине. Экватор находится в центре по горизонтальной линии. В итоге насчитывается 60 таких зон.

Каждая из шестидесяти зон имеет собственную систему прямоугольных координат, отсчитываемую по оси ординат от Х, а по оси абсцисс - от участка земного экватора У. Для однозначного определения местоположения на территории всего земного шара перед значениями Х и У ставят номер зоны.

Значения оси Х на территории России, как правило, являются положительными, в то время как значения У могут быть и отрицательными. Для того чтобы избежать знака минус в величинах оси абсцисс, осевой меридиан каждой зоны условно переносят на 500 метров на запад. Тогда все координаты становятся положительными.

Система координат была предложена Гауссом в качестве возможной и рассчитана математически Крюгером в середине двадцатого века. С тех пор она используется в геодезии в качестве одной из основных.

Система высот

Системы координат и высот, применяемые в геодезии, используются для точного определения положения точки на территории Земли. Абсолютные высоты отсчитываются от уровня моря или другой поверхности, принятой за исходную. Кроме того, имеются относительные высоты. Последние отсчитываются как превышение от искомой точки до любой другой. Их удобно применять для работы в местной системе координат с целью упрощения последующей обработки результатов.

Применение систем координат в геодезии

Помимо вышеперечисленных, имеются и другие системы координат, применяемые в геодезии. Каждая из них имеет свои преимущества и недостатки. Есть также свои области работы, для которых актуален тот или иной способ определения местоположения.

Именно цель работы определяет, какие системы координат, применяемые в геодезии, лучше использовать. Для работы на небольших территориях удобно использовать прямоугольную и полярную системы координат, а для решения масштабных задач необходимы системы, позволяющие охватить всю территорию земной поверхности.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.